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A Peak Pricing Program Details

The PG&E peak pricing program was created in 2008. In 2010 and 2011, the regulator

issued decision 10-02-032 and 11-11-008 respectively, which ordered that small and medium

C&I customers be placed on opt-out peak pricing once they had sufficient hourly billing

data available.1 Prior to these decisions, peak pricing was structured as an optional opt-

in program, but enrollment generally was low. The first wave of small and medium C&I

customers were placed on the peak pricing tariff in November 2014. Customers were notified

of their enrollment via mail and e-mail, and were given the ability to opt out easily at any

time via a simple web interface. Appendix Figure A1 shows the letter that was sent to all

establishments in October 2014 notifying them that they would be enrolled in November 2014

for the summer of 2015. The letter was one of many notifications sent, and includes clear

directions on how to opt out of the program through their PG&E online billing interface.

Establishments are notified of a peak pricing event day by 2:00 pm the day before an

event, and on Friday for Monday events. PG&E decides when to call an event day using the

day-ahead maximum temperature forecasts at five National Weather Service (NWS) stations

located in the inland regions of California.2 When the average of maximum temperatures

across all five stations exceeds a trigger temperature, typically 96 or 98 degrees, an event day

is called for the following day.

Appendix Table A1 lists all of the event days between 2013 and 2015. The second

column shows the forecasted average maximum temperature from the five NWS weather

stations. The trigger temperature is based on historical weather patterns and is adjusted

every 15 days throughout the summer. The trigger temperature starts at 96 degrees earlier

in the summer and adjusts based on how many event days are called. For example, if many

1Large PG&E customers, defined as having demand charges above 200kW/month, were transitioned to
opt-out peak pricing starting in 2010.

2Three day-ahead forecasts were used to call a Monday event day. The five stations used for the average
are Red Bluff (KRBL), Sacramento (KSAC), Fresno (KFAT), Concord (KCCR), and San Jose (KSJC).
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event days are called in the first part of the summer, the trigger will be revised upward to

save the remaining event days for the hottest days.3

B Data Appendix

For this analysis, I combined PG&E data from many sources to create the final dataset

for analysis. The high-frequency usage data required cleaning and a number of assumptions

to collapse it down to the establishment level. The following section details the process of

how I constructed the final dataset.

B.1 Interval Usage Data

PG&E first gave me interval usage data for a large sample of non-residential, non-

agricultural establishments for 2010-2014. From this dataset, I requested the 2015 data for

the subset of establishments that I use in my analysis. All of these establishments had smart

meter interval data that started within 6 months of September 1, 2011, a date that I use in

my identification strategy.4 This gives me a dataset of electricity usage for 54,458 accounts in

2014 and 2015. The high-frequency usage data was collected from establishments at the 15

minute level, which I aggregate to the hourly level for analysis. From this point forward, the

sample I discuss refers to hourly observations between 2:00 pm and 6:00 pm for all summer

non-holiday weekdays (June-October) in 2014 and 2015.5

Using this initial dataset, I drop establishments that moved or changed ownership during

the summer of 2014 or 2015. I do this because I want to focus the analysis on establishments

that faced peak pricing for the full summer. This drops 10,231 establishments, leaving 44,227

in the balanced panel. I require that at least 23 percent of the establishments have non-zero

usage over the 2014-2015 sample. This is done to guarantee that there is positive electricity

consumption during most hours. This drops an additional 4,603 establishments, leaving

39,624.

I drop all establishments that never consumed 1 kWh in any peak hour, and I drop

establishments that consumed less than 800 kWh/month during the summer of 2014. These

requirements are to remove any smaller usage meters that may not be directly associated

3The goal of this approach is to be more stringent earlier in the summer when there is more uncertainty
over the remaining weather of the summer.

4See Section 4.1 for more details on the identification strategy.
5I drop all establishments that voluntarily opted into the peak pricing program. More details on this can

be found in Appendix Section D.4.
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with an establishment’s main electricity usage.6 For example, there are cases where a meter

was installed to power a single light in a strip mall, but was not associated with any of

the establishments there. In some cases, the light was paid for by the owner of the strip

mall and not by a business establishment, making it too small to consider in this analysis.

The 1 kWh/hour restriction drops 5,145 accounts and the 800 kWh/month restriction drops

another 14,224, leaving a dataset of 19,318.7 Establishments that consumed more than 10,000

kWh/month in the summer of 2014 are also dropped due to their large size and the likelihood

that they would graduate to a higher tariff in the near future. Only 272 establishments were

excluded based on this criterion. Despite the large number of establishments dropped based

on size restrictions, those that remain account for 82 percent of total electricity demand in

this class of customers.

In many parts of the analysis, I break my sample into an inland and coastal region of the

PG&E service territory. This is done because the coast has a milder summer climate, which

may impact how establishments respond to peak pricing. To determine an establishment’s

region, I use the PG&E baseline territory designation. Baseline territories are defined

as geographic areas that have similar weather conditions, making them an ideal way to

geographically classify establishments. PG&E uses baseline territories for billing residential

customers, but they have no impact on C&I electricity prices. I classify establishments in

baseline territories Q,T and V as coastal, and the others as inland.

North American Industry Classification System (NAICS) codes were provided by PG&E

for 89.2 percent of the establishments in the sample. Classifications are typically done at the

firm level, meaning that the NAICS code assigned to a given establishment may not reflect

its actual business. For example, the office space associated with a food packing plant may

also be classified as a food packing plant due to the overall firm classification. Despite these

limitations, it still provides useful information for the data cleaning process. Appendix Table

A4 shows the breakdown of establishments by two-digit NAICS prefix. I drop meters with the

two-digit prefixes 22 and 51 because they did not correspond to specific establishments, and

typically had time-invariant consumption profiles in the pre-period. NAICS code 22 signifies

“utilities,” and, for small C&I establishments, it typically corresponds to irrigation systems

run by city governments. They are generally small electricity users, and there are only 166 of

these establishments in the dataset. The NAICS prefix 51 corresponds to the “information”

industry classification, which, in my dataset, are cellular phone transmission towers run by

companies such as AT&T and Verizon. The 702 establishments with this classification had

6This step is due to the fact that the data is provided at the account level, and must be aggregated to the
establishment level. Some small usage accounts are not associated with an establishment, and are dropped in
this step. Appendix Section B.2 discusses the establishment definition in more detail.

7The results are robust to including smaller establishments.
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flat consumption profiles and were usually located in fields or on top of buildings. The results

in this paper are robust to the inclusion of these two NAICS codes.

The final cleaned dataset contains interval usage data for 19,071 establishments in the

summers of 2014 and 2015.

B.2 Classifying Establishments

I define an establishment as an electricity user at a single location where electricity bills

are paid for by the same entity. This definition reflects the fact that some establishments have

multiple electricity meters. PG&E interval usage data is reported at the meter-account level,

which does not map directly to the establishment level that I use for analysis. The majority

(83 percent) of establishments have one meter associated with each location, making the

mapping of meter-account to establishment level data straightforward. Around 9 percent of

the total establishments had multiple meters clearly at the same location, making it possible

to collapse usage to the establishment level. Another 7 percent of customers have meters

that may be at the same location, but where the smart meters were installed on a different

date.8 I do not aggregate across accounts such as this because it is possible that, at a given

establishment, one meter may end up on peak pricing while the other does not. I include

these meters as separate establishments in my analysis.9

The analysis in this paper focuses on small C&I establishments. Around 2.3 percent of

establishments share a premise with a meter that is on a different price schedule (tariff). For

example, the office space that administers a food processing plant may be the correct size

to be in my sample. However, the food processing plant, which uses a lot more electricity,

may be on a tariff designed for much larger users, and is not in my sample. To test for

the impact of establishment classification, Appendix Table A6 shows the results when all

of the ambiguously classified establishments discussed in this section are dropped. This

leaves the 83 percent of establishments with a one-to-one relationship between the meter and

the establishment. The results are similar to what is found using the primary specification

in Table 3, suggesting that establishment classification has little impact on the estimated

outcomes.

8In some cases, an establishment may have one smart meter that was installed within the eight-week
bandwidth of September 1, 2011 and another that was not.

9The results are robust to specifications where these establishments are dropped.

4



C Time-of-Use Pricing

The regulator established a set of data requirements for all establishments before they

were placed on opt-out peak pricing. The requirements were designed so that establishments

would have a history of interval metering data before they were presented with a more

complex, time-varying price. The data requirements are responsible for the September 1,

2011 threshold that is used to identify peak pricing program impacts in this paper.

The September 1, 2011 cutoff is due to two different, but related, requirements. First,

establishments needed to be on mandatory time-of-use (TOU) pricing for two years before

they were eligible for peak pricing. Second, establishments needed to be given a billing

analysis by PG&E before they were moved onto mandatory TOU pricing. The billing analysis

required a full year of data to conduct, and it told establishments how their bills would

change under TOU pricing. The billing analysis had to be given to an establishment at least

45 days before it was placed on TOU pricing. The two requirements combined to require

that an establishment had interval usage data before September 1, 2011 to be eligible for

opt-out peak pricing in the summer of 2015.

Due to these requirements, the establishments that were placed on peak pricing in

November 2014 are the same establishments that were placed on TOU in November 2012. At

the time of peak pricing treatment in the summer of 2015, these establishments had been

on the TOU rate for 2.5 years. The other establishments in my sample not on peak pricing

were also on TOU pricing, but for only 1.5 years by the summer of 2015. Importantly, all

establishments in my sample were on TOU pricing in both 2014 and 2015. However, the

establishments on peak pricing had been on TOU pricing for one more year than the non-peak

pricing establishments. If the extra year on TOU pricing impacted peak consumption, then

it could bias the peak pricing impacts estimated in Section 5.

TOU pricing did not change electricity prices for small C&I establishments by a large

amount. Before TOU pricing, small C&I establishments paid $.228/kWh during the summer

months, regardless of when it was consumed. Once establishments were moved to TOU

pricing, they paid a different price depending on the time of day. In the summer during

the peak period, which runs between noon and 6:00 pm, electricity cost $.248/kWh. The

off-peak price, which runs from 9:30 pm to 8:30 am, is only discounted to $.212/kWh.10 The

price difference between peak and off-peak consumption is small compared to other C&I

customers. For example, large C&I establishments pay $.148/kWh for their peak electricity

10The part-peak rate, which runs from 8:30 am to noon and 6:00 pm to 9:30 pm, costs $.239/kWh.
Establishments pay off-peak rates on weekends. These rates reflect prices during the summer. Prices during
the winter are lower.
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and a much lower $.077/kWh for off-peak consumption.11 The small price change for small

C&I establishments suggests that it may not significantly impact peak consumption.

I empirical test the impacts of TOU prices on peak consumption by examining the

impact during the first year it was rolled out. I leverage the same September 1, 2011 threshold

used in the main identification strategy to estimate how TOU impacted peak usage. I compare

establishments that were eligible for TOU in November 2012 to those that just missed the

cutoff and were rolled over in November 2013. This design compares establishments in the

first year of TOU to those that were still on flat-rate prices. I use the instrumental variables

approach outlined in section 4.2 and look at the same 2:00 pm-6:00 pm window as in the

peak pricing analysis. Establishments that were eligible for TOU in November 2012 are the

same establishments that were eligible for peak pricing in 2015.

Appendix Table A7 shows the results of these TOU regressions. I conduct the analysis

for both the full summer and for just the event days called that summer. The results across all

of the specifications show that TOU did not significantly affect peak electricity consumption

during the summer of 2013 when the program was first implemented. If TOU does not

significantly change an establishment’s consumption compared to the flat rate, then it seems

unlikely that being on the tariff for 2.5 years versus 1.5 years would significantly affect

usage. This result suggests that the differential time on TOU pricing did not impact peak

consumption during the summers of 2014 and 2015.

C.1 Smart Meter Background

Analog meters have been used since the late 1800s to measure how much electricity

an establishment consumes. These meters were read monthly by a “meter reader,” a utility

employee who manually checked an establishment’s usage once a month. Analog meters

are limited to tracking total kWh consumption, and for some customers they also measure

peak monthly kW usage. Smart meters were first installed across the PG&E service territory

starting in 2008. Smart meters automatically transmit meter-level usage data to PG&E via

a wireless network, eliminating the need for manual checking, and allowing for the collection

of high-frequency usage data.

Most PG&E establishments had smart meters as of mid-2013, with some residential

customers remaining on analog meters by request. Smart meter installations require a

utility worker to visit a business and swap out the old meter. A replacement typically takes

5-15 minutes, does not require the account holder to be present, and only results in a brief

interruption in power. Smart meters were deployed across all parts of PG&E’s service territory

11Electricity prices for large C&I establishments are smaller because they also pay daily fixed fees and
demand charges based on monthly maximum demand.
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simultaneously. Some parts of the state received a larger portion of the installs earlier in the

deployment than others. For example, the California Central Valley had a larger portion of

its meters upgraded to smart meters in the earlier years of the rollout.

Within each region of the state, the installations at individual establishments were as

good as random. Conversations with employees at PG&E have indicated that the deployment

pattern of smart meters was based on the availability of contractors and resources, and

generally not related to establishment characteristics. A PG&E report on the deployment

described:

The deployment schedule is dependent upon the availability of a trained

workforce, an effective supply chain to maintain an efficient installation process,

and customer premise access to make the necessary changes at each service

location. Deployment planning adjustments may be required due to any number

of factors, including adverse customer impacts, supply chain considerations, labor

availability, and technology considerations, which could affect the scheduling of

meter endpoint installations (Pacific Gas & Electric 2010).

A smart meter transmits data wirelessly to PG&E through a series of network access

points on utility poles throughout the PG&E service territory. After a smart meter is installed,

it takes between 60 and 90 days for the meter to sync up with the network and for the data

to become available in the PG&E system. Furthermore, a series of data quality checks is

conducted by the PG&E system to verify that the data is of suitable quality for billing, and

that there are no holes in the data. During this time period, the meter reader continues to

manually check the usage on the smart meter to verify the transmission system worked as

intended. Once this process is complete, the establishment is transitioned to full smart meter

interval usage data collection. This process is summarized in the PG&E documentation as

follows:

After installation, gas and electric meters transition when: (1) the communi-

cations network infrastructure is in place to remotely read them; (2) the meters

are installed, remotely read, and utilize smart meter data for billing; (3) and

the remote meter reads become stable and reliable for billing purposes. Once

enough customers on a particular “route string” transition to smart meter billing,

manual reading of the meters on that “route string” ceases, and those meters are

considered activated (Pacific Gas & Electric 2010).

This transition process explains why a large portion of the establishments that were

eligible for peak pricing did not end up in the program for the summer of 2015. If an
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establishment did not have a full year of “stable and reliable” billing data to allow for a

billing analysis to be conducted, then they were not moved to TOU pricing in November

2012. The interval meter start date data used in this paper reflects when the interval data

was first collected, not when it was declared “stable and reliable.” As a result, the eligibility

status does not perfectly predict peak-pricing enrollment in the summer of 2015.

C.2 Regression Discontinuity Approach

This section introduces a fuzzy regression discontinuity (RD) approach that explicitly

controls for the distance in days an establishment is from the September 1, 2011 threshold. I

estimate the impact of peak pricing with the following two equations via 2SLS:

Qit = β1P̂ eakit + β2XiPostt + β3Xi{Eligible× Post}it + β7Tempit+

β8Temp
2
it + ζt + γi + εit

(A1)

Peakit = α1{Eligible× Post}it + α2XiPostt + α3Xi{Eligible× Post}it+

α4Tempit + α5Temp
2
it + ζt + γi + ηit

(A2)

Equation (A1) is the second stage equation. P̂ eakit is an indicator of peak pricing

enrollment for establishment i in hour-of-sample t, which is instrumented for in the first stage

(Equation A2) using the cutoff-based instrument interacted with the post period. I control

for the distance in days from September 1, 2011 linearly, using Xi, as suggested by Gelman

and Imbens (2017). γi controls for establishment fixed effects.12 The remaining terms are the

same as those found in Section 4.2. Inference is complicated by the discrete nature of the

distance from the threshold running variable. I cluster at the distance from threshold level

based on the suggestion of Lee and Card (2008).13

The main difference between the RD approach and instrumental variables approach

used in Section 4.2 is that the RD controls for the distance from the threshold in the post

period.14 This technique absorbs any linear relationship between the distance from the

threshold and εit, which removes it as a potential confounding factor in the estimation of

12The results are robust to using an establishment by hour-of-day by day-of-week fixed effect.
13Individual establishments are nested within each distance from the threshold, meaning the errors are also

robust to within-establishment correlation. See Appendix Section D.3 for alternate clustering specifications.
14The other terms that are typically seen in a cross-sectional RD such as overall distance from the threshold

and a period indicator are absorbed in the panel RD framework by the establishment and time fixed effects.
As a result, the only difference between the RD and IV approach is the post period indicator interacted with
distance from the threshold.

8



peak pricing impacts. Identification in the RD model comes from the assumption that the

relationship between εit and the distance from threshold does not change discontinuously at

the September 1, 2011 cutoff, conditional on controls and fixed effects.

Figure A5 presents graphical evidence that the observable characteristics are smooth

through the discontinuity. Another concern is the potential manipulation of the running

variable near the threshold. I do not expect this to be a factor because the September 1, 2011

threshold was not known to the establishments or PG&E staff at the time. The top right

graph in Figure A5 shows the count of smart meter installations by bin. There is no visible

spike before or after the September 1, 2011 threshold, which is evidence that establishments

did not manipulate their starting date.

The main RD specification uses the same sample as the IV approach, where establish-

ments are restricted to have high-frequency metering data that started within eight weeks of

the September 1, 2011 cutoff. In alternate specifications, I use varying bandwidths and find

similar results.

D Results Robustness

D.1 Regression Discontinuity results

In this section I show the impacts of peak pricing on electricity usage using the RD

approach in Section C.2. Table A8 shows the first stage results from estimating Equation

(A2). Column (1) shows the results for the sample that spans the PG&E service territory.

This first stage result is smaller than the coefficient estimate of .223 that was found using

the IV approach. The discrepancy reflects the differences between the approaches: they are

identifying different local average treatment effects (LATE). The RD approach estimates

the vertical difference, conditional on fixed effects, at the September 1, 2011 cutoff, which

is roughly 9 percentage points, as seen in Figure 3. The IV approach, on the other hand,

estimates the average difference between eligible and ineligible customers, leading to a higher

number. The F-statistic on the first stage approach is 24, providing evidence of a valid first

stage. Columns (2) and (3) report the first stages for the coastal and inland regions separately.

The result is not significant for the Coastal RD, suggesting that it is a weak instrument for

that subset of customers.

Table A9 shows the impacts of peak pricing on electricity consumption. The sample

is the same as the primary specification estimated in Table 3. Similar to the primary IV

specification, the results for all PG&E and the Coastal region are not significant at the 5

percent level. Establishments in the inland region reduce their usage during event hours by
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24.6 percent. The impact of peak pricing on inland establishments using the RD approach is

larger than the 13.5 percent reduction found in the primary specification. This difference

reflects the different local average treatment effects estimated by the two approaches. The

RD specification estimates the treatment effect at the September 1, 2011 cutoff, while the IV

approach estimates the average impact across the entire 8 week sample. Despite the large

difference in the point estimates, it is not possible to reject that the two estimates are the

same.

Figure A6 graphically shows the intent-to-treat impacts of peak pricing eligibility on

peak usage using the RD approach for inland customers. The horizontal axis bins customers

by when their smart meter data were first collected, similar to Figure 3. The vertical axis

displays the difference between average 2015 event day consumption and 2014 event day

consumption. The figure presents residuals after temperature, establishment, and hour-of-

sample fixed effects are removed. Customers to the right of the September 1, 2011 cutoff

were not on peak pricing, while a portion of customers to the left of the vertical line were

on peak pricing. The figure shows a reduction in peak consumption for peak-pricing-eligible

establishments to the left of the vertical line compared to the ineligible group to the right.15

The intent-to-treat impacts of peak pricing seen in this figure are visible but noisy.

The RD approach uses an eight-week bandwidth around the September 1, 2011 cutoff,

but the results do not change substantially at different bandwidths, as shown in panel B

of Figure A7. The results in this section are robust to a number of other specification and

clustering choices, as shown later in this section.

D.2 OLS Results

Appendix Table A11 shows the results for the IV approach run with OLS. This approach

uses the 13 percent of establishments on peak pricing as the treatment group and the 87

percent not on peak pricing as the control group. The results are smaller than what was

found using the IV approach. This is consistent with a story that the control group was

reducing its usage between 2014 and 2015, which would result in a lower treatment effect.

It is also likely that the treatment and control groups are not balanced on unobservable

characteristics that may impact peak consumption. The research designs used in this paper

avoid the potential for bias in the OLS results by using a natural experiment to compare

similar peak-pricing eligible and ineligible establishments.

15I remove Monday event days from the figure because they typically have a noisier response due to being
announced the Friday before. By removing Mondays, it is easier to see the effects in Figure A6.
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D.3 Clustering Robustness

This section considers an alternate way to cluster the standard errors in this analysis. In

the main analysis, errors for the IV specification are two-way clustered at the establishment

and hour-of-sample level. In the RD specification, errors are clustered at the distance from

threshold level. One alternative is to cluster errors at the weather station level. The hourly

weather data comes from 297 weather stations across Northern California, with establishments

matched to the closest station.16 Establishments are matched to the same weather station

for the full sample, meaning the establishment clusters are contained within each weather

station cluster.

Appendix Table A12 shows the results with errors clustered at weather station level.

For the IV specification, I two-way cluster at the weather station and hour-of-sample level.

In the RD specification, I two-way cluster at the distance-from-threshold and weather station

level. The results show that this higher level of clustering has little impact on the standard

errors, and it does not impact the overall results.

D.4 Opt-in Establishments

In the primary analysis in this paper, I do not include establishments that voluntary

opted into the peak pricing program. I do this because the establishments opted into peak

pricing at various times throughout 2014 and 2015. As a result, they were on peak pricing

for a different length of time than the majority of establishments in my sample. 48 of the 234

establishments that opted into peak pricing did so before the summer of 2014, meaning they

did not have bill protection in the summer of 2015. Another five establishments chose to

enroll in peak pricing during the summer of 2015. The remaining 181 establishments enrolled

in peak pricing in April and May of 2015. This gave them less time to prepare for the peak

pricing program than the establishments that had been automatically enrolled in November

2014.

I include the opt-in establishments as a robustness check to test whether their presence

impacts the results. Appendix Table A13 shows the main specification estimated with the

234 opt-in establishments included. The results show that including these opt-in customers

has a small impact on the overall results. Column (6) shows that the inland RD specification

is no longer significant at the 5 percent level, but the point estimate does not change much.

The inland IV estimate has a coefficient of -.1375, which is smaller than the coefficient of

-.1451 in the primary results. I cannot reject that these two values are the same, suggesting

that opt-in establishments do not have a large impact on the results.

16I use a balanced panel of weather stations, and no weather stations enter or leave during the sample.
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E Calculations

E.1 Calculating PG&E Wide Savings Estimates

This section provides details on the PG&E-wide savings calculations discussed in Section

5.5. PG&E does not release data that reports peak load by customer class. To proceed

with the calculations in this section, I make a number of informed assumptions about the

consumption patterns of small C&I PG&E customers.17

First, I calculate the total number of inland establishments on the A1 tariff based on

demographic data provided by PG&E. I adjust this number downward to reflect the fact

that my sample includes only customers that consumed between 800 kWh/month and 10,000

kWh/month during the summer months.18 This results in 157,000 inland establishments

that are like those I study in my analysis. I adjust for establishments that will opt out of

peak pricing by using the PG&E-wide observed opt-out rate for small C&I establishments

between November 2014 and October 2016 of 16.7 percent. I assume subsequent waves of

establishments will opt out at the same rate.

To calculate the average establishment level kWh/hour reductions, I multiply the

average inland establishment consumption of 6.7 kWh/hour by the implied percent reductions

from Column (3) of Table 3. To calculate the aggregate impact, I multiply this by the number

of inland establishments that satisfy the criteria outlined above. Using this approach, I find

that small C&I establishments provide reductions of 118 MW.

This calculation assumes that the establishments used in the main estimation sample

reflect the average consumption patterns for all C&I establishments. It is not possible to

prove that the local average treatment effects estimated in the previous sections reflect the

behavior of all small C&I establishments in California, but the estimates are the best available

and are useful for back-of-the-envelope calculations. Figure A8 shows that this is true when

comparing establishments within 8 weeks of the September 1, 2011 cutoff to those within 27

weeks. It shows a similar pattern of usage, helping to validate this assumption.

The aggregate savings estimate calculated above is conservative in nature. I am

considering only the savings for inland customers with summer consumption between 800

kWh/month and 10,000 kWh/month. This leaves out a large number of smaller establishments,

and a small number of larger establishments that likely reduce their usage under peak pricing.

The savings estimate also does not include reductions from coastal customers. I make this

17I cannot use my interval consumption data to make these calculations because I only have a sample of
small C&I establishments’ usage.

18I do this using the ratio of inland establishments consuming between 800 kWh/month and 10,000
kWh/month to all inland establishments in my sample.
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choice because the main empirical strategy did not find significant reductions for the coastal

establishments.

E.2 Environmental impact

The peak pricing program is designed to improve grid efficiency, but it also affects power

plant emissions. In California, peak demand is typically satisfied by natural gas turbine

generators, which have a moderate CO2 emissions rate and low SO2 and NOX emissions

rates. To better understand the magnitude of the impacts of peak pricing on CO2 emissions,

I conduct a simple back-of-the-envelope calculation using my estimates of the impact of

peak pricing on demand along with estimates from the California Energy Commission on

emissions rates (California Energy Commission 2015). I find that the peak pricing program

will cause a reduction of around 4,000 metric tons of CO2 per summer when the policy is fully

implemented.19 The calculation also assumes that the peak pricing program will not increase

consumption during non-event hours. The annual reduction in CO2 emissions, while not

insignificant, is only .11 percent of California’s daily electricity sector emissions (California

Air Resources Board 2019). Using a $50/ton social cost of carbon, the reductions translate

to around $200,000 per year in benefits (Revesz et al. 2017).20 I include these benefits in

the welfare calculations conducted in the subsequent section. Overall, the carbon reduction

benefits are a small fraction of the overall value provided by the peak pricing policy.

E.3 Detailed Calculations of PG&E Welfare Impacts of Peak Pric-

ing

In this section, I calculate the welfare impact of the PG&E peak pricing program for

small C&I establishments using the model from the previous section and my empirical results.

The calculations are summarized in Table 8. Some of the simplified assumptions in the model

are adjusted to better reflect the PG&E service territory. In the model, the utility purchases

19This is a relatively small CO2 reduction compared to California’s total emissions of 440 million metric
tons in 2015 (California Air Resources Board 2019). This calculation of the peak pricing program’s effect
is made using the CO2 emissions rate of 1,239 lbs/MWh from a conventional single cycle plant. This is a
conservative assumption because the other generation options, such as a combined cycle plant or hydropower,
have lower or zero emissions rates. The use of hydropower to meet peak demand, while causing no emissions
at the time of generation, has an opportunity cost that likely will lead to non-zero emission impacts in the
long run.

20The impacts on SO2 and NOX are small enough that I do not include them in the benefits calculations.
For example, I find that peak pricing will reduce NOX emissions by less than 1 ton per year and SO2 emissions
by .05 tons. California’s carbon emissions are capped, but the cap is not currently binding. As a result, any
additional emissions reductions from peak pricing will reduce total emissions. If the cap is binding in future
years, the welfare benefits from reducing carbon emissions will be lower.
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capacity yearly at cost C(Xt). In practice, the peaker plants that are used to satisfy peak

demand typically last at least 30 years.

To approximate the cost function, I use the construction cost of a single cycle peaker

plant. The California Energy Commission estimates it costs $1,185,000/MW to build a

natural gas combustion turbine peaker plant (California Energy Commission 2015).21 Using

these plant construction numbers and my empirical estimates, I find that the peak pricing

program would provide a one-time saving of $140 million in construction costs. I assume

this cost savings occurs in year 1 of a 30-year program. To value the total impacts of the

program, I include the discounted stream of annual costs and benefits. Reducing peaker

capacity provides an annual benefit of avoided staffing and maintenance costs, which in this

case totals $3.07 million per year. I use a linear demand curve to make the net consumer

surplus (CS) and utility surplus (UTS) loss calculation. I find the CS losses are $2.05 million

per year, and the UTS losses are $1.11 million per year.

The PG&E peak pricing program gives enrolled establishments a $.01/kWh discount

on all non-event day electricity consumption. As a result, establishments will consume more

electricity in off-peak hours, resulting in increased consumption across almost all summer

hours. Importantly, this price reduction is welfare improving because the retail price of

electricity for small C&I customers exceeds any reasonable social cost. The benefits of the

$.01/kWh discount are small but add up across all non-event hours during the summer.

Using my elasticity estimates and linear demand, I calculate these welfare gains to be $0.84

million/year.22 The benefit of this small price decrease in non-event hours are added to the

overall welfare benefits of the policy.

To come up with a total welfare value, I take the construction costs and add on the

discounted stream of costs and benefits detailed above. I also include the benefits of reducing

CO2 emissions calculated in Section E.2, which total $.2 million/year.23 This results in total

welfare benefits of $159 million (2016 dollars) using a 3 percent real discount rate and a

30-year horizon.24

21All values used in this paper are in 2016 dollars. Original 2011 values are inflated using the IHS North
American Power Capital Costs Index.

22This is a strong assumption because I am applying my demand curve estimates, derived for the period
between 2:00 pm and 6:00 pm on event days, to all other hours in the summer. Using the empirical analysis on
non-event hours in the summer of 2015, I can reject the level of responsiveness I am using for this calculation.
Ultimately, the response from the off-peak CS gains is small and does not significantly impact outcomes.

23The local air pollution benefits are not significant and I do not include them in the calculation.
24The results are not sensitive to discount rate assumptions because most of the benefit is incurred upfront

with the avoidance of capital construction costs. The other annual costs and benefits are roughly offsetting.
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E.4 Assumptions for Comparison of Peak Pricing to Real-time

Pricing

This section describes the assumptions used to make the calculations in Section 6.5. I

compare the outcomes under peak pricing to the first-best outcomes under a theoretical real-

time price scenario. I do this for two reasons. First, there is no market price in California that

can be used for the real-time price comparisons. The existing wholesale market has a number

of distortions, including a price cap, a capacity market and the regulator resource adequacy

requirements. The price cap prevents the real-time price from going above $1.00/kWh.

The capacity market allows the utilities to use bilateral contracts to secure capacity, which

further reduces the wholesale real-time price. All of these distortions make it problematic

as a real-time price for this analysis, because it is not always clear what the California

real-time wholesale price reflects. Second, the simple setup that I use allows for a transparent

comparison between peak pricing and real-time pricing that does not depend on institutional

details of the California market.

The theoretical market I use is structured as an energy-only market without any price

caps. I assume real-time prices (RTP) take on two values. The low value is set at $.10/kWh,

which roughly reflects the marginal cost of a natural gas combined-cycle generator. The

high value is set at $1.35/kWh and reflects both the generation and capacity cost of peaker

plants.25 I assume prices spike to the high level sometime between 2:00 pm and 6:00 pm

on three super-peak days per year. Customers are charged a monthly fixed fee to recover

the remaining fixed costs associated with transmission and distribution. For the primary

specification shown in Table 11, I assume prices are at the high level for one hour on each of

the three super-peak event days. Appendix Table A16 considers an alternate scenario where

prices are at the high level for the full four hours between 2:00pm and 6:00pm on the three

super-peak event days each year.

Retail prices under peak pricing are similar to the real-time price for most hours of

the year. Retail prices are set at the same $.10/kWh price and fixed monthly charges are

used to recover any remaining costs, including capacity costs, transmission and distribution

charges. On event days, the price is raised between 2:00 pm and 6:00 pm. In the current

program, I assume the price is set at $.85/kWh for 15 event days each summer. For the

well-targeted program, I assume a price of $1.35/hour for eight event days per year based on

the 101 degree trigger temperature described in section 6.4. In both cases, three of the event

days are super-peak days each summer. By design, the peak pricing program will collect more

25The $1.35 value is based on the large C&I peak price. PG&E based this value on its internal valuation of
capacity.
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revenue than the RTP program because of the longer and more frequent periods at the high

price. I assume this money is reflected in adjustments to fixed charges for the subsequent

year.

F Welfare Robustness Checks

Section 6.5 compares peak pricing to the first-best real time pricing policies. Embedded

in this analysis are a number of assumptions about how establishments will respond to both

real-time pricing and peak pricing. In this section, I consider a number of alternate scenarios

to test the robustness of the results to changing some of these assumptions.

One important modeling assumption is that establishments respond in the same way to

a peak pricing event announced a day in advance and a real-time price that changes on short

notice. It is possible that the day-ahead alert gives establishments more time to prepare

and could result in larger reductions in peak usage than a real-time price spike. To test

the sensitivity of the results to this assumption, I consider a scenario where the demand

reductions under real-time pricing are 15 percent smaller than those of peak pricing at the

same price level. I find that the current peak pricing program achieves 51 percent of the

first-best benefits and the well targeted version improves this outcome to 97 percent. The

results reflect that if establishments are more responsive to peak pricing than real-time pricing

at the same price level, the peak pricing program’s relative performance improves. The

decrease in establishment response to real-time pricing does not change the overall conclusion

that a well-designed peak pricing program can greatly improve outcomes.

Another assumption is that the peak price should be set at $1.35/kWh. This level is

based on a PG&E valuation of capacity, but it may not reflect the true long-run cost of

supply. I test the robustness of the results to this assumption by rerunning the model using

a peak price of $1.10/kWh. At this lower peak price, the current program would achieve 57

percent of the first best benefits and the well targeted version would achieve 88 percent.26

The similarity of these results to the main specification shows that within a reasonable range,

the overall findings are not sensitive to the level of the optimal peak price.

One shortcoming of the stylized welfare model is that net consumer surplus losses

are calculated based on observed changes in consumption during peak pricing events. Any

behavior undertaken by establishments before or after a real-time price spike or outside a peak

pricing event window is not included in the net consumer surplus loss calculations. For this

26I find a similar result at optimal peak prices higher than $1.35/kWh, however this requires extrapolating
the empirical results further out of sample than the main specifications and the results must be considered in
this context.
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omission to have a large impact on the results of the benchmarking exercise, establishments

would have to respond differently to peak pricing than to real-time pricing in the hours

outside the event window. For example, the longer peak pricing event window could cause

establishments to adjust their behavior outside the event window more than they would under

real-time pricing. If establishments behaved in this manner, the estimates in this section

would inflate the value of peak pricing relative to real-time pricing. To test how a differential

response might affect the results, I consider a scenario where the net consumer surplus losses

are 50 percent larger under the peak pricing program. Using this altered assumption, the

current and well targeted programs would achieve 39 percent and 75 percent of the first-best

outcomes respectively. The findings suggest that higher peak pricing consumer surplus losses

would reduce the relative effectiveness of the peak pricing program, but that there are still

significant benefits to effectively designing the program.

Appendix References

California Air Resources Board (2019). California Greenhouse Gas Emissions for 2000 to 2017.

California Energy Commission (2015). Estimated Cost of New Renewable and Fossil Generation in California.

Gelman, Andrew and Guido Imbens (2017). “Why High-Order Polynomials Should Not Be Used in Regression

Discontinuity Designs.” Journal of Business & Economic Statistics 0 (ja), pp. 0–0.

Holland, Stephen P. and Erin T. Mansur (2008). “Is Real-Time Pricing Green? The Environmental Impacts

of Electricity Demand Variance.” Review of Economics and Statistics 90.3, pp. 550–561.

Lee, David S. and David Card (2008). “Regression Discontinuity Inference with Specification Error.” Journal

of Econometrics. The Regression Discontinuity Design: Theory and Applications 142.2, pp. 655–674.

Pacific Gas & Electric (2010). Advanced Metering Infrastructure Semi-Annual Assessment Report SmartMeter�

Program Quarterly Report.

Revesz, R. et al. (2017). “Best Cost Estimate of Greenhouse Gases.” Science 357.6352, pp. 655–655.

17



Appendix Figures

Appendix Figure A1: 30 Day Notification of Peak Pricing Enrollment

Note. — This letter is a sample of what was sent to every establishment 30 days before they were enrolled in
peak pricing in November 2015. It was provided to me by PG&E. It was one of many letters that were sent
to establishments informing them of the rollover. It provides information on how to opt out at the web site
“pge.com/pdpchoice.” It also describes bill protection and directs establishments how to set their event day
notification preferences.
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Appendix Figure A2: Map of Establishments in Primary Sample by Region

Note. — This figure shows all 7,435 establishments in the primary sample that have smart meter data starting
within eight weeks of the September 1, 2011 threshold. Each dot corresponds to an individual establishment.
The inland versus coastal designation is based on baseline territory as defined by PG&E and reflects climate
conditions. See Appendix Section B.1 for more details on this classification.
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Appendix Figure A3: Average Temperature on Event days by County
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Note. — This figure shows the average temperature on event days in 2015 displayed at the county level.
Temperatures reflect the average temperature across all Mesowest weather stations in a county between 2:00
pm and 6:00 pm. Weather stations are weighted based on the number of establishments to which they are
distance-matched in the main analysis. Information is displayed at the county level as a convenient level of
aggregation; county-level data is not used for any of the analysis in this paper. Counties in dark gray do not
have any PG&E establishments. The figure shows that inland regions of California have much higher event
day temperatures than do coastal regions.
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Appendix Figure A4: Pre-Period Electricity Consumption by Eligibility Group
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Note. — This figure shows the 2014 pre-period average hourly electricity consumption for peak pricing
eligible and ineligible establishments. The vertical lines signify the beginning (2:00 pm) and end (6:00 pm) of
the peak event window.
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Appendix Figure A5: Smoothness of Observable Characteristics through the September 1,
2011 Threshold
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Note. — This figure shows trends in observable characteristics near the September 1, 2011 discontinuity,
shown with the solid black vertical line. The vertical dashed lines indicate the eight-week bandwidth used in
the main specifications.
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Appendix Figure A6: The Impact of Peak Pricing Eligibility on Inland Establishment Peak
Consumption (Intent to Treat)
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Note. — This figure shows the intent-to-treat impact of peak pricing eligibility on consumption between 2:00
pm and 6:00 pm on event days. Each dot represents the difference between 2015 and 2014 peak consumption
by bin, conditional on establishment and hour-of-sample fixed effects. The figure shows the intent-to-treat
impacts of the peak pricing policy, which is 6.2 percent and is significant at the 5 percent level. Establishments
to the left of the September 1, 2011 cutoff are eligible for peak pricing and show a reduction in peak usage.
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Appendix Figure A7: Treatment for Inland Establishments Effects Estimated at Varying
Bandwidths
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Note. — Each panel on this figure shows the coefficient from seven different regressions estimating the
impacts of peak pricing on usage. Each dot represents an individual regression. Panel A shows the results
from estimating Equation (1) for inland establishments using bandwidths between 4 and 16 weeks from the
September 1, 2011 threshold. Panel B does the same using the RD specification from estimating Equation
(A1). The dotted lines are the 95 percent confidence interval.
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Appendix Figure A8: Pre-Period Electricity Consumption for Primary and Extend Sample
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Note. — This figure compares summer 2014 hourly kWh usage for establishments in the primary sample
of eight weeks from the September 1, 2011 threshold to a larger sample. The larger sample includes all
establishments within 27 weeks of the September 1, 2011 threshold, excluding those within eight weeks.
Values show residuals after establishment fixed effects are removed. The figure shows that the load profile is
similar between the establishments used in the primary analysis and those further from the September 1,
2011 threshold.
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Appendix Tables

Appendix Table A1: Event Days with Day Ahead Temperature Forecasts

Event date
NWS day ahead

max temperature forecast
Trigger

temperature

6/7/2013 98 96

6/28/2013 99 96

7/1/2013 107 96

7/2/2013 106 96

7/9/2013 96 96

7/19/2013 98 98

8/19/2013 94 96

9/9/2013 97 94

9/10/2013 94 94

10/18/2013 82 89

6/9/2014 100 96

6/30/2014 102 96

7/1/2014 96 96

7/7/2014 101 96

7/14/2014 99 96

7/25/2014 101 96

7/28/2014 97 96

7/29/2014 97 96

7/31/2014 98 96

9/12/2014 96 98

6/12/2015 99 96

6/25/2015 103 96

6/26/2015 100 96

6/30/2015 101 96

7/1/2015 100 98

7/28/2015 101 98

7/29/2015 104 98

7/30/2015 100 98

8/17/2015 101 96

8/18/2015 96 96

8/27/2015 97 96

8/28/2015 96 96

9/9/2015 102 98

9/10/2015 104 98

9/11/2015 101 98

Note. — This table shows all of the event days between 2013 and 2015. The second column shows the
day-ahead maximum temperature forecast used by PG&E to call an event day. NWS corresponds to five
National Weather Service stations that PG&E uses for its forecasting. The third column shows the trigger
temperature that is used to call an event day. When the NWS forecast equals or exceeds the trigger
temperature, an event day is typically called. The trigger temperature starts at 96 degrees earlier in the
summer and adjusts based on how many event days are called.
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Appendix Table A2: Average Outdoor Temperature on Event Days

Event date
All PG&E

average temperature
Coastal establishments
average temperature

Inland establishments
average temperature

6/9/2014 74.76 67.01 91.66

6/30/2014 75.79 68.05 92.67

7/1/2014 71.28 64.92 85.15

7/7/2014 73.26 66.89 87.15

7/14/2014 73.49 66.85 87.99

7/25/2014 80.98 74.76 94.54

7/28/2014 76.67 71.12 88.77

7/29/2014 76.93 70.71 90.41

7/31/2014 76.00 68.85 91.58

9/12/2014 75.55 68.69 90.50

6/12/2015 75.03 67.57 91.29

6/25/2015 77.30 70.18 92.81

6/26/2015 72.94 65.12 89.98

6/30/2015 81.08 73.57 97.44

7/1/2015 75.89 69.38 90.05

7/28/2015 80.86 74.34 95.06

7/29/2015 77.21 69.55 93.90

7/30/2015 76.86 70.50 90.69

8/17/2015 77.94 70.66 93.77

8/18/2015 75.65 70.37 87.14

8/27/2015 83.97 80.18 92.21

8/28/2015 82.88 78.52 92.38

9/9/2015 86.73 81.66 97.77

9/10/2015 82.79 76.54 96.40

9/11/2015 80.62 74.40 94.17

Average 77.70 71.21 91.82

Note. — This table shows the average temperature between 2:00 pm and 6:00 pm on all event days in
2014 and 2015. The values reflect the outdoor temperatures using Mesowest weather station data. Average
temperatures are weighted by the number of establishments that are matched to a given weather station.
Temperatures do not reflect official National Weather station temperatures used to call event days. The data
show that inland temperatures during event hours are much higher than coastal temperatures.
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Appendix Table A3: Electricity Consumption of Establishments by Peak Pricing Eligibility
Status in 2015

Variable Ineligible Eligible
P value of
difference

Summer 2015 avg peak hourly consumption (kWh) 5.66 5.66 .96
(4.41) (4.47)

Summer 2015 max peak hourly consumption (kWh) 8.99 9.07 .58
(6.52) (6.54)

Summer 2015 total event hours consumption (kWh) 339 339 .97
(264) (268)

Summer 2015 total non-event hours consumption (kWh) 12,226 12,083 .49
(9122) (8892)

Establishment count 3,220 4,215

Note. — This table shows the mean and standard deviation of the observable characteristics by peak pricing
eligibility status for establishments within eight weeks of the September 1, 2011 threshold. Standard deviations
are shown in parentheses.
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Appendix Table A4: Establishment Industry Classifications

Naics
2 digit code

Establishment
count

Percent of
establishments

11 104 1.4%

23 232 3.1%

31 168 2.3%

32 107 1.4%

33 226 3%

42 224 3%

44 749 10%

45 286 3.8%

48 73 .98%

52 213 2.9%

53 650 8.7%

54 307 4.1%

56 157 2.1%

61 106 1.4%

62 655 8.8%

71 131 1.8%

72 1,068 14%

81 963 13%

92 215 2.9%

Not available 801 11%

Note. — This table shows the first two digits of the North American Industry Classification System (NAICS)
industry classification for all 7,435 establishments in the sample. These two-digit NAICS codes are used to
classify establishments as customer-facing or non-customer-facing in Section 5.4. The two-digit NAICS code
is used because a large portion of establishments did not have more detail below that level. The PG&E data
did not have NAICS code information for the 11 percent of establishments classified as ”Not available.”
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Appendix Table A5: PG&E System Peak Demand Days

Date Event day
PG&E

max load
Hour of

max load

8/17/2015 yes 19,451 4pm-5pm

6/30/2015 yes 19,320 4pm-5pm

7/29/2015 yes 19,248 4pm-5pm

8/28/2015 yes 19,233 4pm-5pm

9/10/2015 yes 19,230 4pm-5pm

9/9/2015 yes 19,017 4pm-5pm

7/20/2015 no 18,546 4pm-5pm

6/8/2015 no 18,441 6pm-7pm

7/28/2015 yes 18,403 5pm-6pm

9/21/2015 no 18,398 4pm-5pm

8/27/2015 yes 18,328 4pm-5pm

8/16/2015 no 18,197 6pm-7pm

6/25/2015 yes 18,114 4pm-5pm

9/11/2015 yes 18,019 4pm-5pm

6/26/2015 yes 17,950 4pm-5pm

9/8/2015 no 17,875 4pm-5pm

7/30/2015 yes 17,750 4pm-5pm

7/1/2015 yes 17,734 2pm-3pm

8/18/2015 yes 17,372 4pm-5pm

6/12/2015 yes 17,275 5pm-6pm

Note. — This table reports the days with the top 20 peak loads for PG&E in the summer of 2015. Column
2 indicates whether an event day was called on that day. Column 3 reports the PG&E maximum load,
which is the highest five-minute real-time demand at the NP15 aggregation node reported by the California
Independent System Operator (CAISO) at oasis.caiso.com. The hour of maximum load signifies the hour of
the day in which the maximum load occurred.
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Appendix Table A6: The Effect of Peak Pricing on Peak Electricity Consumption: Establish-
ment Classification Robust

All PG&E Coastal Inland

(1) (2) (3) (4) (5) (6)

IV FE IV RD IV FE IV RD IV FE IV RD

Peak pricing −0.0545 −0.2284 0.0347 −0.0039 −0.1434*** −0.3479**
(0.0437) (0.2379) (0.0711) (0.4764) (0.0512) (0.1677)

Establishments 6, 247 6, 247 4, 330 4, 330 1, 917 1, 917
Event day kWh usage 5.47 5.47 4.92 4.92 6.73 6.73
Average temperature 77 77 71 71 92 92

Note. — This table reports regression coefficients from six separate 2SLS regressions where ambiguously
classified establishments are dropped. The dependent variable in all regressions is the log of establishment
hourly kWh consumption. Peak pricing is an indicator of enrollment in peak pricing, for which I instrument
with eligibility status. The coefficients show the impact of peak pricing on peak consumption between 2:00 pm
and 6:00 pm. Appendix Section B.2 outlines the establishment classification process and which establishments
are dropped for this specification. The results show similar responses to the primary specification shown
in Table 3 and the RD results show in Table A9. “IV” and “RD” correspond to the instrumental variables
and regression discontinuity approaches estimated using Equations (1) and (A1). All regressions control for
temperature and include hour-of-sample fixed effects and establishment fixed effects. Standard errors are in
parentheses. IV errors are two-way clustered at the establishment and hour-of-sample levels. RD errors are
clustered at the distance from threshold level. ***Significant at the 1 percent level. **Significant at the 5
percent level. *Significant at the 10 percent level.

Appendix Table A7: Impact of Time of Use Pricing on Peak Consumption when First
Implemented

All PG&E Coastal Inland

(1) (2) (3) (4) (5) (6)

All days Event days All days Event days All days Event days

TOU 0.0363 0.0383 0.0343 0.0235 0.0390 0.0478
(0.0296) (0.0464) (0.0538) (0.0830) (0.0327) (0.0532)

Establishments 7, 383 7, 383 5, 059 5, 059 2, 324 2, 324
Event day kWh usage 4.99 5.45 4.75 4.96 5.52 6.52
Average temperature 71 76 66 69 79 90

Note. — This table reports regression coefficients from six separate 2SLS regressions. The dependent variable
in all regressions is the log of establishment hourly kWh consumption. I use the same IV identification
strategy from Section 4.2 that is used to identify peak pricing impacts in 2015. Establishments that are
eligible for peak pricing in 2015 are the same that are eligible for TOU in 2013. TOU is an indicator for
being on Time of Use (TOU) pricing in the summer of 2013, for which I instrument with eligibility status.
See Appendix Section C for more details. The coefficients show the impact of TOU pricing on consumption
between 2:00 pm and 6:00 pm in the summer of 2013. The regression is estimated for just the event days and
for all summer days in 2012 and 2013. The results show that TOU pricing did not have a significant impact
on peak consumption for any group. All regressions control for temperature and include hour-of-sample fixed
effects and establishment fixed effects. Standard errors are in parentheses. IV errors are two-way clustered
at the establishment and hour-of-sample levels. ***Significant at the 1 percent level. **Significant at the 5
percent level. *Significant at the 10 percent level.
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Appendix Table A8: The Effect of Peak Pricing Eligibility on Enrollment (First Stage):
Regression Discontinuity Approach

(1) (2) (3)

All PG&E Coastal Inland

Eligible × Post 0.0932** 0.0538 0.2258***
(0.0359) (0.0361) (0.0449)

Establishments 7, 435 5, 096 2, 339
F statistic 24 15 45

Note. — This table reports regression coefficients from three separate first-stage regressions estimated using
the RD approach in Equation (A2). The dependent variable in all regressions is a binary indicator if an
establishment is enrolled in the peak pricing program. Eligible × Post is an interaction of an establishment’s
eligibility for peak pricing and 2015. The coefficients show the impact of peak pricing eligibility on program
enrollment. All regressions control for temperature and include hour-of-sample fixed effects and establishment
fixed effects. Standard errors are in parentheses. RD errors are clustered at the distance from threshold level.
***Significant at the 1 percent level. **Significant at the 5 percent level. *Significant at the 10 percent level.

Appendix Table A9: The Effect of Peak Pricing on Peak Electricity Consumption: Regression
Discontinuity Approach

(1) (2) (3)

All PG&E Coastal Inland

Peak pricing −0.21519 −0.05837 −0.28278**
(0.21019) (0.42267) (0.13790)

Temperature −0.00846*** −0.01675*** 0.02842***
(0.00313) (0.00621) (0.00780)

Temperature squared 0.00010*** 0.00015*** −0.00010**
(0.00002) (0.00004) (0.00004)

Establishments 7, 435 5, 096 2, 339
Event day kWh usage 5.55 5.03 6.70
Average temperature 78 71 92

Note. — This table reports regression coefficients from three separate 2SLS regressions estimated using
Equation (A1). The dependent variable in all regressions is the log of establishment hourly kWh consumption.
Peak pricing is an indicator for enrollment in peak pricing, for which I instrument with eligibility status. The
coefficients show the impact of peak pricing on peak consumption between 2:00 pm and 6:00 pm. For inland
establishments, the coefficient corresponds to a 13.5 percent reduction in usage. All regressions control for
temperature and include hour-of-sample fixed effects and establishment fixed effects. Standard errors are in
parentheses. RD errors are clustered at the distance from threshold level. ***Significant at the 1 percent
level. **Significant at the 5 percent level. *Significant at the 10 percent level.
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Appendix Table A10: The Effect of Peak Pricing on Peak Electricity Consumption: Intent to
Treat

(1) (2) (3)

All PG&E Coastal Inland

Peak pricing −0.01549* 0.00130 −0.05267***
(0.00920) (0.01095) (0.01656)

Temperature −0.00486** −0.01763*** 0.02310***
(0.00238) (0.00367) (0.00663)

Temperature squared 0.00008*** 0.00015*** −0.00007*
(0.00001) (0.00002) (0.00004)

Establishments 7, 435 5, 096 2, 339
Event day kWh usage 5.55 5.03 6.70
Average temperature 78 71 92

Note. — This table reports regression coefficients from three separate regressions estimated using Equation

(1) where P̂ eakit is replaced with the eligibility indicator Eligibleit. The dependent variable in all regressions
is the log of establishment hourly kWh consumption. Peak pricing is an indicator for enrollment in peak
pricing, for which I instrument with eligibility status. The coefficients show the impact of peak pricing on
peak consumption between 2:00 pm and 6:00 pm. For inland establishments, the coefficient corresponds to a
13.5 percent reduction in usage. All regressions control for temperature and include hour-of-sample fixed
effects and establishment fixed effects. Standard errors are in parentheses. IV errors are two-way clustered at
the establishment and hour-of-sample levels. RD errors are clustered at the distance from threshold level.
***Significant at the 1 percent level. **Significant at the 5 percent level. *Significant at the 10 percent level.

Appendix Table A11: OLS Impact of Peak pricing on Peak Electricity Consumption

(1) (2) (3)

All PG&E Coastal Inland

Peak pricing −0.0469*** −0.0272 −0.0589**
(0.0149) (0.0176) (0.0244)

Establishments 7, 435 5, 096 2, 339
Event day kWh usage 5.59 5.03 6.70
Average temperature 78 71 92

Note. — This table reports regression coefficients from three separate OLS regressions. The dependent
variable in all regressions is the log of establishment hourly kWh consumption. Peak pricing is an indicator
for enrollment in peak pricing. This specification uses the 13 percent of establishments on peak pricing as the
treatment group and the 87 percent not on peak pricing as the control group. The coefficients show the OLS
estimated impact of peak pricing on consumption between 2:00 pm and 6:00 pm. The results show smaller
impacts from peak pricing than the primary specification instrumented version shown in Table 3. The smaller
impacts suggest that the control group is decreasing its usage over time, resulting in a downward-biased
treatment effect. The errors are two-way clustered at the establishment and hour-of-sample levels. All
regressions control for temperature and include hour-of-sample fixed effects and establishment fixed effects.
Errors are two-way clustered at the establishment and hour-of-sample levels.
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Appendix Table A12: The Effect of Peak Pricing on Peak Electricity Consumption: Weather
Station Clustering Robust

All PG&E Coastal Inland

(1) (2) (3) (4) (5) (6)

IV RD IV RD IV RD

Peak pricing −0.0697* −0.2152 0.0084 −0.0584 −0.1451*** −0.2828**
(0.0403) (0.2046) (0.0729) (0.4070) (0.0441) (0.1274)

Establishments 7, 435 7, 435 5, 096 5, 096 2, 339 2, 339
Event day kWh usage 5.55 5.55 5.03 5.03 6.70 6.70
Average temperature 78 78 71 71 92 92

Note. — This table reports regression coefficients from six separate 2SLS regressions. The IV regressions are
the same as the primary specification shown in Table 3, but with errors clustered at the weather station level.
I use weather data from Mesowest, which has 297 weather stations that provide hourly data. “IV” and “RD”
correspond to the instrumental variables and regression discontinuity approaches estimated using Equations
(1) and (A1). For the IV regressions, errors are two-way clustered at the weather station and hour-of-sample.
For the RD regressions, errors are two-way clustered at the weather station and distance from threshold. The
dependent variable in all regressions is the log of establishment hourly kWh consumption. Peak pricing is an
indicator of enrollment in peak pricing, for which I instrument with eligibility status. The coefficients show
the impact of peak pricing on peak consumption between 2:00 pm and 6:00 pm. All regressions control for
temperature and include hour-of-sample fixed effects and establishment fixed effects.

Appendix Table A13: Robustness: Opt-in Peak Pricing Establishments Included

All PG&E Coastal Inland

(1) (2) (3) (4) (5) (6)

IV FE IV RD IV FE IV RD IV FE IV RD

Peak pricing −0.0615 −0.1493 0.0145 0.1177 −0.1375*** −0.2765*
(0.0431) (0.1958) (0.0726) (0.4408) (0.0480) (0.1466)

Establishments 7, 669 7, 669 5, 272 5, 272 2, 397 2, 397
Event day kWh usage 5.54 5.54 5.02 5.02 6.71 6.71
Average temperature 78 78 71 71 92 92

Note. — This table reports regression coefficients from six separate 2SLS regressions. The results reflect
the primary specification shown in Table 3 with the 234 establishments that voluntarily opted into peak
pricing included. See Appendix Section D.4 for more details. Including these establishments does not
significantly impact the results. The dependent variable in all regressions is the log of establishment hourly
kWh consumption. Peak pricing is an indicator of enrollment in peak pricing, for which I instrument with
eligibility status. The coefficients show the impact of peak pricing on peak consumption between 2:00 pm and
6:00 pm. “IV” and “RD” correspond to the instrumental variables and regression discontinuity approaches
estimated using Equations (1) and (A1). All regressions control for temperature and include hour-of-sample
fixed effects and establishment fixed effects. Standard errors are in parentheses. IV errors are two-way
clustered at the establishment and hour-of-sample levels. RD errors are clustered at the distance from
threshold level. ***Significant at the 1 percent level. **Significant at the 5 percent level. *Significant at the
10 percent level.
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Appendix Table A14: Welfare Impacts of Peak Pricing Under Alternate Scenarios with
Temperature Response from 102 to 104 Day Ahead Max Temperature Forecast Days

(1) (2) (3)

Scenario
$.85/kWh peak
(current price)

$1.35/kWh peak
(large C&I peak price)

$1.85/kWh peak
(high price)

Panel A: Linear demand

15 days/summer $199 $265 $264

101 degree trigger (8 days) $236 $372 $451

Super-peak days (3 days) $263 $448 $585

Panel B: Constant elasticity demand

15 days/summer $237 $265 $265

101 degree trigger (8 days) $268 $323 $344

Super-peak days (3 days) $291 $365 $401

Note. — This table shows the welfare benefits (in millions of 2016 dollars) of the peak pricing program under
different program design scenarios where the savings come from inland establishments in Table 5 on days with
a day-ahead forecast of 102 to 104 degrees. Panel A shows the welfare calculations using a linear demand
curve and Panel B does the same using a constant elasticity demand curve. Column (1) shows outcomes
under the current $.85/kWh peak price. Column (2) shows the estimated outcomes if the peak price were set
at $1.35, which is the level of large commercial and industrial customers and is based on a PG&E valuation
of capacity at peak. Column (3) shows the impacts if the price was set at $1.85/kWh. The first row of each
panel reflects the current 15 event days per summer and the entry in the top left shows the welfare impacts
estimated for the current program. The middle row of each panel reflects the proposed alternate 101 degree
trigger for event days, and the bottom row of each panel shows the hypothetical scenario when only the three
super-peak event days each year could be called. The welfare calculations assume that peak wholesale prices
are greater than or equal to the peak price in each column.
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Appendix Table A15: Welfare Impacts of Peak Pricing Under Alternate Scenarios with
Double the Demand Response

(1) (2) (3)

Scenario
$.85/kWh peak
(current price)

$1.35/kWh peak
(large C&I peak price)

$1.85/kWh peak
(high price)

Panel A: Linear demand

15 days/summer $319 $425 $424

101 degree trigger (8 days) $378 $595 $723

Super-peak days (3 days) $421 $717 $937

Panel B: Constant elasticity demand

15 days/summer $468 $573 $614

101 degree trigger (8 days) $512 $647 $711

Super-peak days (3 days) $543 $700 $781

Note. — This table shows the welfare benefits (in millions of 2016 dollars) of the peak pricing program
under different program design scenarios. In this table I assume establishment response is double the main
specification in Table 3. Panel A shows the welfare calculations using a linear demand curve and Panel B
does the same using a constant elasticity demand curve. Column (1) shows outcomes under the current
$.85/kWh peak price. Column (2) shows the estimated outcomes if the peak price were set at $1.35, which is
the level of large commercial and industrial customers and is based on a PG&E valuation of capacity at peak.
Column (3) shows the impacts if the price was set at $1.85/kWh. The first row of each panel reflects the
current 15 event days per summer and the entry in the top left shows the welfare impacts estimated for the
current program. The middle row of each panel reflects the proposed alternate 101 degree trigger for event
days, and the bottom row of each panel shows the hypothetical scenario when only the three super-peak
event days each year could be called. The welfare calculations assume that peak wholesale prices are greater
than or equal to the peak price in each column.

Appendix Table A16: Welfare Impacts of Peak Pricing Compared to First-Best Real-Time
Price

(1) (2) (3)

Event days called per summer
$.85/kWh peak price
(peak price < RTP)

$1.35/kWh peak price
(peak price = RTP)

$1.85/kWh peak price
(peak price > RTP)

8 event days (well targeted) 51% 87% 73%

15 event days (current) 45% 69% 35%

Note. — This table compares the peak pricing program to the first-best, real-time price across a number of
scenarios. The percent values reflect the percent of the welfare benefits that the peak pricing scenario can
achieve compared to the first-best alternative. The table shows results similar to Table 11, except prices
remain at the high $1.35/kWh level for four hours between 2:00 pm and 6:00 pm instead of for just one hour.
Column (1) reflects the current program, where peak prices are set at $.85/kWh, which is below the optimal
level. Column (3) shows the impacts when prices are set above this level. The top row reflects the outcomes
when eight event days are called per year. The bottom row shows the results for the current program, in
which I assume 15 event days are used each summer.
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Appendix Table A17: Welfare Impacts of Peak Pricing Compared to First-Best, Real-Time
Price: Constant Elasticity Demand Curve

(1) (2) (3)

Event days called per summer
$.85/kWh peak price
(peak price < RTP)

$1.35/kWh peak price
(peak price = RTP)

$1.85/kWh peak price
(peak price > RTP)

8 event days (well targeted) 69% 87% 80%

15 event days (current) 63% 75% 60%

Note. — This table compares the peak pricing program to the first-best, real-time price across a number
of scenarios. The comparison uses a constant elasticity demand curve to estimate net consumer surplus
losses and demand above the empirically observed price. The percent values reflect the percent of the welfare
benefits the peak pricing scenario can achieve compared to the first-best alternative. For this table, the
optimal peak price is set at $1.35/kWh for one hour on three super-peak days per summer. Column (1)
reflects the current program, where peak prices are set at $.85/kWh, which is below the optimal level. Column
(3) shows the impacts when prices are set above this level. The top row reflects the outcomes when eight
event days are called per year. The bottom row shows the results for the current program, in which I assume
15 event days are used each summer. The current program achieves 44 percent of the first-best policy, while
the well-targeted program could achieve 83 percent of the benefits.
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